Left Termination of the query pattern
sublist_in_2(a, g)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
sublist(Xs, Ys) :- ','(app(X, Zs, Ys), app(Xs, X1, Zs)).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
Queries:
sublist(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (f,b)
app_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(X, Zs, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_ag(Xs, Ys, app_in_aag(Xs, X1, Zs))
U2_ag(Xs, Ys, app_out_aag(Xs, X1, Zs)) → sublist_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U1_ag(x1, x2, x3) = U1_ag(x3)
app_in_aag(x1, x2, x3) = app_in_aag(x3)
app_out_aag(x1, x2, x3) = app_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U3_aag(x1, x2, x3, x4, x5) = U3_aag(x1, x5)
U2_ag(x1, x2, x3) = U2_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(X, Zs, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_ag(Xs, Ys, app_in_aag(Xs, X1, Zs))
U2_ag(Xs, Ys, app_out_aag(Xs, X1, Zs)) → sublist_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U1_ag(x1, x2, x3) = U1_ag(x3)
app_in_aag(x1, x2, x3) = app_in_aag(x3)
app_out_aag(x1, x2, x3) = app_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U3_aag(x1, x2, x3, x4, x5) = U3_aag(x1, x5)
U2_ag(x1, x2, x3) = U2_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(X, Zs, Ys))
SUBLIST_IN_AG(Xs, Ys) → APP_IN_AAG(X, Zs, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U1_AG(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_AG(Xs, Ys, app_in_aag(Xs, X1, Zs))
U1_AG(Xs, Ys, app_out_aag(X, Zs, Ys)) → APP_IN_AAG(Xs, X1, Zs)
The TRS R consists of the following rules:
sublist_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(X, Zs, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_ag(Xs, Ys, app_in_aag(Xs, X1, Zs))
U2_ag(Xs, Ys, app_out_aag(Xs, X1, Zs)) → sublist_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U1_ag(x1, x2, x3) = U1_ag(x3)
app_in_aag(x1, x2, x3) = app_in_aag(x3)
app_out_aag(x1, x2, x3) = app_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U3_aag(x1, x2, x3, x4, x5) = U3_aag(x1, x5)
U2_ag(x1, x2, x3) = U2_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3)
SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2)
U1_AG(x1, x2, x3) = U1_AG(x3)
U2_AG(x1, x2, x3) = U2_AG(x3)
U3_AAG(x1, x2, x3, x4, x5) = U3_AAG(x1, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(X, Zs, Ys))
SUBLIST_IN_AG(Xs, Ys) → APP_IN_AAG(X, Zs, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U1_AG(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_AG(Xs, Ys, app_in_aag(Xs, X1, Zs))
U1_AG(Xs, Ys, app_out_aag(X, Zs, Ys)) → APP_IN_AAG(Xs, X1, Zs)
The TRS R consists of the following rules:
sublist_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(X, Zs, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_ag(Xs, Ys, app_in_aag(Xs, X1, Zs))
U2_ag(Xs, Ys, app_out_aag(Xs, X1, Zs)) → sublist_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U1_ag(x1, x2, x3) = U1_ag(x3)
app_in_aag(x1, x2, x3) = app_in_aag(x3)
app_out_aag(x1, x2, x3) = app_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U3_aag(x1, x2, x3, x4, x5) = U3_aag(x1, x5)
U2_ag(x1, x2, x3) = U2_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3)
SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2)
U1_AG(x1, x2, x3) = U1_AG(x3)
U2_AG(x1, x2, x3) = U2_AG(x3)
U3_AAG(x1, x2, x3, x4, x5) = U3_AAG(x1, x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 5 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
sublist_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(X, Zs, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(X, Zs, Ys)) → U2_ag(Xs, Ys, app_in_aag(Xs, X1, Zs))
U2_ag(Xs, Ys, app_out_aag(Xs, X1, Zs)) → sublist_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U1_ag(x1, x2, x3) = U1_ag(x3)
app_in_aag(x1, x2, x3) = app_in_aag(x3)
app_out_aag(x1, x2, x3) = app_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U3_aag(x1, x2, x3, x4, x5) = U3_aag(x1, x5)
U2_ag(x1, x2, x3) = U2_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2) = .(x1, x2)
APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
The graph contains the following edges 1 > 1